Application: LASER CUTTING
Applicable Material: Metal
Condition: New
Laser Type: Fiber Laser
Cutting Area: 1500mm*3000mm
Cutting Speed: 1-100mm/s
Graphic Format Supported: AI, PLT, DXF, BMP, Dst, Dwg, LAS, DXP
Cutting Thickness: 1-20mm
CNC or Not: Yes
Cooling Mode: WATER COOLING
Control Software: software
Laser Source Brand: RAYCUS
Laser Head Brand: Raytools
Servo Motor Brand: Yaskawa
Xihu (West Lake) Dis.rail Brand: PMI
Control System Brand: Cypcut
Weight (KG): 2500 KG
Key Selling Points: Multifunctional
Optical Lens Brand: II-VI
Warranty: 2 years
Applicable Industries: Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Other, Advertising Company
Machinery Test Report: Provided
Video outgoing-inspection: Provided
Warranty of core components: 1.5 years
Core Components: Pressure vessel, Motor, Other, Bearing, Gear, Pump, Gearbox, Engine, PLC
Mode of Operation: Pulsed
Configuration: 3-axis
Products handled: Sheet Metal and Tube
Feature: Automated Loading
Product Name: CNC Fiber Laser Metal Cutting Machine for Carbon Steel
Effective cutting size: : 3000*1500mm*200mm
Laser Cutting Head: Raytools Fiber Laser Cutting Head
Control System: Cypcut Control System
Motor and Driver: Delta Servo Motor and Driver
Fiber Laser Source: Raycus / Maxphotonics Fiber Laser
Work Table: Sawteeth working table
Application Materials: Carbon Steel Stainless Steel Aluminum
Reducer: Japan CZPT Reducer
Xihu (West Lake) Dis. rail: ZheJiang PMI Square Xihu (West Lake) Dis. Rails
Packaging Details: The package of cnc router 1.Wooden box or as requirement 2.Plywood case package

Hot sale! High precision high torque WP type Worm gear speed reducer 1500W laser Cutter 1530 Sheet SS pipe cutting CNC Fiber Laser Cutting Machine
FeatureWhat’s the feature of CNC Fiber Laser Cutting Machine?Ø Effective cutting size : 3000*1500mm*200mmØ Raytools Fiber Laser Cutting HeadØCypcut control systemØ Delta servo motorØ Raycus / Maxphotonics Fiber LaserØ Sawteeth working tableØ ZheJiang TBI Ball Screw,Germany Helical Rack and Pinion
Optional parts :Ø4th Rotary Axis for Metal TubesØEnclosed cover,protect from laser.ØJapan CZPT Reducer

What’s the Technical data of CZPT Fiber Laser Cutting Machine ?

Technical Data
NO.DescriptionParameter
1Laser SourceRaycus / Maxphotonics
2Positioning Accuracy±0.02mm/300mm
3Laser Power500w, 750w, 1000w,1500W,2000W,3000W etc
4Maxinum Speed100M/min
5Running Environment Temperature0 – 45 Centigrade
6Relative Humidity 30% – 75%
7 Voltage3PH, AC 380V/50HZ
AdvantageWhat’s the advantage of CZPT Fiber Laser Cutting Machine ?

1.Controller
Cypcut control system
-Which can realize intelligent layout of graphics,automatically choosing and matching cutting paths, save processing time
2.Laser Source
Famous Brand Raycus / Maxphotonics
-Solid state laser lasts over 50,000hrs; Various power options of 500w, 750w, 1000w,1500W,2000W,3000W etc
3.Auto focusing
Capacitive Auto-height adjusting Raytools cutting headCutting Head
-Focal point will be automatically adjusted in cutting process to achieve the best cutting effect of different thicknesses sheets metal.
4.Servo system
Japan YASKAWA Servo driver and motor
-With strong power and high precision
5.Reducer
Japan CZPT Reducer
-The world best reducer brand.Used for replace traditional rack and belt, high torque low noise gear motor gearbox reducer for watch display watch winder rotor to make machine more powerful and stable
6.High accuracy
Precision cutting
-Which can reach ±0.02mm/300mm

BenefitsWhat’s the benefit of CZPT CNC Fiber Laser Cutting Machine?
Applicable Industry:
This machin is widely used in various industries such as advertising decoration,kitchen ware,engineering machinery,steel and iron,automobile,metal plate chassis,air-conditioner manufacturing,metal plate cutting,etc.

Applicable Materials:
Carbon steel: 0-20mm; Stainless steel: 0-10mm.
Professional used to cut thin sheet metal, aluminum alloy plate, galvanized sheet, electrolytic plate, silicon steel, titanium alloy, aluminium zinc plate and other metal.

Packaging & ShippingHow do we package our CZPT CNC Fiber Laser Cutting Machine?


Our Services
What’s our service for CZPT CNC Fiber Laser Cutting Machine ?
Guarantee:1.5 years for the whole machine. Within 18 months under normal use and maintenance, if something is wrong with the machine, you will get spare part for free. Out of 18 months, you will get spare parts at cost price. You will also get technical support and service all the lifetime.Technical support:1. Technical support by phone, email, WhatsApp, Wechat or Skype around the clock2. Friendly English version manual and operation video CD disk3. Engineer available to service machinery overseasAfter sales services:Normal machine is properly adjusted before dispatch. You will be CZPT to use the machine immediately after received machine.Besides, you will be CZPT to get free training advice towards our machine in our factory. You will also get free suggestion and consultation, technical support and service by

Why Choose us???:

Customer VisitCustomer visiting our factory


FAQ1) This is the first time I use this kind of machine, is it easy operate?
There are CZPT video that show how to use machine and english instruction book send to you with machine.
If there is still have any question, we will provide free professinal CZPT for you until you could use machine well.
2) If machine have any problem after I ordered it, how could I do?
Free parts send to you in machine warranty period if machine have any problem.
Free after-sales service life for machine, please feel free contact us if your machine have any problem.
3) MOQ ?
Our MOQ is 1 set machine. We could send machine to your country port directly, High quality at reasonable cost speed reducer please tell us your port name. There will be best shipping freight and machine price send to you.
Relative Products

Plasma cutting MachineEconomical CNC Router ATC CNC Router Machine
Contact Chart

Types of Bevel Gears

Bevel Gears are used in a number of industries. They are used in wheeled excavators, dredges, conveyor belts, mill actuators, and rail transmissions. A bevel gear’s spiral or angled bevel can make it suitable for confined spaces. It is also used in robotics and vertical supports of rolling mills. You can use bevel gears in food processing processes. For more information on bevel gears, read on.
gear

Spiral bevel gear

Spiral bevel gears are used to transmit power between two shafts in a 90-degree orientation. They have curved or oblique teeth and can be fabricated from various metals. Bestagear is one manufacturer specializing in medium to large spiral bevel gears. They are used in the mining, metallurgical, marine, and oil fields. Spiral bevel gears are usually made from steel, aluminum, or phenolic materials.
Spiral bevel gears have many advantages. Their mesh teeth create a less abrupt force transfer. They are incredibly durable and are designed to last a long time. They are also less expensive than other right-angle gears. They also tend to last longer, because they are manufactured in pairs. The spiral bevel gear also reduces noise and vibration from its counterparts. Therefore, if you are in need of a new gear set, spiral bevel gears are the right choice.
The contact between spiral bevel gear teeth occurs along the surface of the gear tooth. The contact follows the Hertz theory of elastic contact. This principle holds for small significant dimensions of the contact area and small relative radii of curvature of the surfaces. In this case, strains and friction are negligible. A spiral bevel gear is a common example of an inverted helical gear. This gear is commonly used in mining equipment.
Spiral bevel gears also have a backlash-absorbing feature. This feature helps secure the thickness of the oil film on the gear surface. The shaft axis, mounting distance, and angle errors all affect the tooth contact on a spiral bevel gear. Adjusting backlash helps to correct these problems. The tolerances shown above are common for bevel gears. In some cases, manufacturers make slight design changes late in the production process, which minimizes the risk to OEMs.

Straight bevel gear

Straight bevel gears are among the easiest types of gears to manufacture. The earliest method used to manufacture straight bevel gears was to use a planer equipped with an indexing head. However, improvements have been made in manufacturing methods after the introduction of the Revacycle system and the Coniflex. The latest technology allows for even more precise manufacturing. Both of these manufacturing methods are used by CZPT. Here are some examples of straight bevel gear manufacturing.
A straight bevel gear is manufactured using two kinds of bevel surfaces, namely, the Gleason method and the Klingelnberg method. Among the two, the Gleason method is the most common. Unlike other types of gear, the CZPT method is not a universal standard. The Gleason system has higher quality gears, since its adoption of tooth crowning is the most effective way to make gears that tolerate even small assembly errors. It also eliminates the stress concentration in the bevelled edges of the teeth.
The gear’s composition depends on the application. When durability is required, a gear is made of cast iron. The pinion is usually three times harder than the gear, which helps balance wear. Other materials, such as carbon steel, are cheaper, but are less resistant to corrosion. Inertia is another critical factor to consider, since heavier gears are more difficult to reverse and stop. Precision requirements may include the gear pitch and diameter, as well as the pressure angle.
Involute geometry of a straight bevel gear is often computed by varying the surface’s normal to the surface. Involute geometry is computed by incorporating the surface coordinates and the theoretical tooth thickness. Using the CMM, the spherical involute surface can be used to determine tooth contact patterns. This method is useful when a roll tester tooling is unavailable, because it can predict the teeth’ contact pattern.
gear

Hypoid bevel gear

Hypoid bevel gears are an efficient and versatile speed reduction solution. Their compact size, high efficiency, low noise and heat generation, and long life make them a popular choice in the power transmission and motion control industries. The following are some of the benefits of hypoid gearing and why you should use it. Listed below are some of the key misperceptions and false assumptions of this gear type. These assumptions may seem counterintuitive at first, but will help you understand what this gear is all about.
The basic concept of hypoid gears is that they use two non-intersecting shafts. The smaller gear shaft is offset from the larger gear shaft, allowing them to mesh without interference and support each other securely. The resulting torque transfer is improved when compared to conventional gear sets. A hypoid bevel gear is used to drive the rear axle of an automobile. It increases the flexibility of machine design and allows the axes to be freely adjusted.
In the first case, the mesh of the two bodies is obtained by fitting the hyperboloidal cutter to the desired gear. Its geometric properties, orientation, and position determine the desired gear. The latter is used if the desired gear is noise-free or is required to reduce vibrations. A hyperboloidal cutter, on the other hand, meshes with two toothed bodies. It is the most efficient option for modeling hypoid gears with noise concerns.
The main difference between hypoid and spiral bevel gears is that the hypoid bevel gear has a larger diameter than its counterparts. They are usually found in 1:1 and 2:1 applications, but some manufacturers also provide higher ratios. A hypoid gearbox can achieve speeds of three thousand rpm. This makes it the preferred choice in a variety of applications. So, if you’re looking for a gearbox with a high efficiency, this is the gear for you.

Addendum and dedendum angles

The addendum and dedendum angles of a bevel gear are used to describe the shape and depth of the teeth of the gear. Each tooth of the gear has a slightly tapered surface that changes in depth. These angles are defined by their addendum and dedendum distances. Addendum angle is the distance between the top land and the bottom surface of the teeth, while dedendum angle is the distance between the pitch surface and the bottom surface of the teeth.
The pitch angle is the angle formed by the apex point of the gear’s pitch cone with the pitch line of the gear shaft. The dedendum angle, on the other hand, is the depth of the tooth space below the pitch line. Both angles are used to measure the shape of a bevel gear. The addendum and dedendum angles are important for gear design.
The dedendum and addendum angles of a bevel gear are determined by the base contact ratio (Mc) of the two gears. The involute curve is not allowed to extend within the base diameter of the bevel gear. The base diameter is also a critical measurement for the design of a gear. It is possible to reduce the involute curve to match the involute curve, but it must be tangential to the involute curve.
The most common application of a bevel gear is the automotive differential. They are used in many types of vehicles, including cars, trucks, and even construction equipment. They are also used in the marine industry and aviation. Aside from these two common uses, there are many other uses for bevel gears. And they are still growing in popularity. But they’re a valuable part of automotive and industrial gearing systems.
gear

Applications of bevel gears

Bevel gears are used in a variety of applications. They are made of various materials depending on their weight, load, and application. For high-load applications, ferrous metals such as grey cast iron are used. These materials have excellent wear resistance and are inexpensive. For lower-weight applications, steel or non-metals such as plastics are used. Some bevel gear materials are considered noiseless. Here are some of their most common uses.
Straight bevel gears are the easiest to manufacture. The earliest method of manufacturing them was with a planer with an indexing head. Modern manufacturing methods introduced the Revacycle and Coniflex systems. For industrial gear manufacturing, the CZPT uses the Revacycle system. However, there are many types of bevel gears. This guide will help you choose the right material for your next project. These materials can withstand high rotational speeds and are very strong.
Bevel gears are most common in automotive and industrial machinery. They connect the driveshaft to the wheels. Some even have a 45-degree bevel. These gears can be placed on a bevel surface and be tested for their transmission capabilities. They are also used in testing applications to ensure proper motion transmission. They can reduce the speed of straight shafts. Bevel gears can be used in many industries, from marine to aviation.
The simplest type of bevel gear is the miter gear, which has a 1:1 ratio. It is used to change the axis of rotation. The shafts of angular miter bevel gears can intersect at any angle, from 45 degrees to 120 degrees. The teeth on the bevel gear can be straight, spiral, or Zerol. And as with the rack and pinion gears, there are different types of bevel gears.

China Custom Hot sale! 1500W laser Cutter 1530 Sheet SS pipe cutting CNC Fiber Laser Cutting Machine     spurs gearChina Custom Hot sale! 1500W laser Cutter 1530 Sheet SS pipe cutting CNC Fiber Laser Cutting Machine     spurs gear